

Bien se préparer au prochain DS pendant les vacances ... Fiche d'entraînement 15 : suites numériques (partie 1)

Exercice 1

Les questions qui suivent sont indépendantes.

1) Calcul des quatre premiers termes de la suite (u_n) :

cas 1:
$$u_0 = 0$$
 et pour tout $n \ge 0$, $u_{n+1} = u_n^2 + \frac{3}{n+1}$

$$u_0 = 0$$

$$u_1 = u_0^2 + \frac{3}{0+1} = 0^2 + 3 = 3$$

$$u_2 = u_1^2 + \frac{3}{1+1} = 3^2 + \frac{3}{2} = 9 + \frac{3}{2} = \frac{21}{2}$$

$$u_3 = u_2^2 + \frac{3}{2+1} = \left(\frac{21}{2}\right)^2 + \frac{3}{3} = \frac{441}{4} + 1 = \frac{445}{4}$$

cas 2 : $u_0 = -1$ et pour tout $n \ge 1$, $u_n = 4u_{n-1} + 2n$.

$$u_0 = -1$$

$$u_1 = 4 \times u_0 + 2 \times 1 = 4(-1) + 2 = -2$$

$$u_0 = -1$$

 $u_2 = 4 \times u_1 + 2 \times 2 = 4(-2) + 4 = -4$

$$u_3 = 4 \times u_2 + 2 \times 3 = 4(-4) + 6 = -10$$

2) Soit (v_n) la suite définie par $v_n = n^2 + 2n$ pour tout $n \ge 0$. Exprimons v_{n+1} , v_{2n} et v_{n+4} en fonction de n:

$$v_{n+1} = (n+1)^2 + 2(n+1) = (n+1)[(n+1)+2] = (n+1)(n+3) = n^2 + 4n + 3$$

$$v_{2n} = (2n)^2 + 2(2n) = 4n^2 + 4n$$

$$v_{n+4} = (n+4)^2 + 2(n+4) = (n+4)[(n+4)+2] = (n+4)(n+6) = n^2 + 10n + 24$$

Exercice 2

Soit la suite (w_n) définie par : $\begin{cases} w_n = \frac{4}{4 - w_n} \end{cases}$

1) Calculons les premiers termes de la suite (w_n) :

$$w_0 = 0 \; \; ; \; \; w_1 = \frac{4}{4 - w_0} = \frac{4}{4 - 0} = 1 \; \; ; \; \; w_2 = \frac{4}{4 - w_1} = \frac{4}{4 - 1} = \frac{4}{3} \; \; ; \; \; w_3 = \frac{4}{4 - w_2} = \frac{4}{4 - \frac{4}{3}} = \frac{4}{8} = 4 \times \frac{3}{8} = \frac{3}{2} = \frac{6}{4} \; \ldots$$

Il semble donc que pour tout entier naturel n, $w_n = \frac{2n}{n+1}$.

2) Étudions les variations de la suite (w_n) en étudiant le signe de $w_{n+1} - w_n$:

$$w_{n+1} - w_n = \frac{2(n+1)}{n+1+1} - \frac{2n}{n+1} = \frac{2(n+1)^2 - 2n(n+2)}{(n+1)(n+2)} = \frac{2n^2 + 4n + 2 - 2n^2 - 4n}{(n+1)(n+2)} = \frac{2}{(n+1)(n+2)}.$$

Pour tout entier naturel n, (n+1)(n+2)>0 et 2>0 d'où $\frac{2}{(n+1)(n+2)}>0$ cad $w_{n+1}-w_n>0$.

Ainsi, pour tout $n \in \mathbb{N}$, $w_{n+1} > w_n$. La suite (w_n) est donc croissante.

3) a/ Établissons une conjecture sur la limite de la suite (w_n) en générant la suite sur le tableur de la calculatrice : **Remarque :** en terminale, vous apprendrez à trouver la limite d'une suite à l'aide de la formule explicite.

•	A	В
=		
1	0.	0.
2	1.	1.
3	2.	1.33333
4	3.	1.5
5	4.	1.6
6	5.	1.66667
7	6.	1.71429
8	7.	1.75
9	8.	1.77778
10	9.	1.8
11	10.	1.81818

11	10.	1.81818
12	11.	1.83333
13	12.	1.84615
14	13.	1.85714
15	14.	1.86667
16	15.	1.875
17	16.	1.88235
18	17.	1.88889
19	18.	1.89474
20	19.	1.9
21	20.	1.90476
22	21.	1.90909

22	21.	1.90909
23	22.	1.91304
24	23.	1.91667
25	24.	1.92
26	25.	1.92308
27	26.	1.92593
28	27.	1.92857
29	28.	1.93103
30	29.	1.93333
31	30.	1.93548
32	31.	1.9375
33	32.	1.93939

Il semble que $\lim_{n \to \infty} w_n = 2$

b/On sait que sur pour tout entier naturel n_r on a $w_{n+1} = f(w_n)$ avec la fonction f définie sur $[0; +\infty]$ par:

$$f(x) = \frac{4}{4-x}$$
.

La limite l, si elle existe, vérifie : l = f(l),

c'est-à-dire :

$$l = \frac{4}{4-l} \Leftrightarrow l(4-l) = 4 \Leftrightarrow -l^2 + 4l - 4 = 0 \Leftrightarrow l^2 - 4l + 4 = 0 \Leftrightarrow (l-2)^2 = 0 \Leftrightarrow l-2 = 0 \Leftrightarrow l=2.$$

Par calcul, on obtient de nouveau : $\lim w_n = 2$.

c/Retrouvons à l'aide d'un algorithme que la limite de la suite (w_n) semble être égale à 2 :

Plusieurs méthodes sont possibles :

méthode 1 : calculons w_{100} , puis w_{1000} , puis w_{10000} à l'aide d'un algorithme :

```
Code de l'algorithme

1 VARIABLES
2 W EST_DU_TYPE NOMBRE
3 n EST_DU_TYPE NOMBRE
4 k EST_DU_TYPE NOMBRE
5 DEBUT_ALGORITHME
6 LIRE n
7 W PREND_LA_VALEUR 0
8 POUR k ALLANT_DE 1 A n
9 DEBUT_POUR
10 W PREND_LA_VALEUR 4/(4-W)
11 FIN_POUR
12 AFFICHER W
13 FIN_ALGORITHME
```

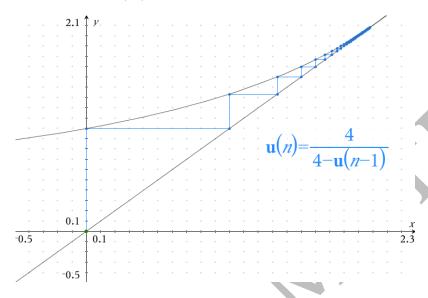
```
***Algorithme lancé***
Entrer n : 100
1.980198
***Algorithme terminé***
```

Algorithme lancé
Entrer n : 1000
1.998002
Algorithme terminé

Algorithme lancé
Entrer n : 10000
1.9998
Algorithme terminé

d/ On a représenté dans un repère orthonormé la courbe représentative de la fonction f telle que pour tout entier naturel n, $w_{n+1} = f(w_n)$.

Construction en chemin des premiers termes de la suite (w_n) et déterminer graphiquement le limite de la suite (w_n) .



On observe graphiquement que l'abscisse du point d'intersection de la courbe Cf et de la droite d'équation y = x est x = 2.

D'où $\lim w_n = 2$.

Exercice 3

À partir de mesures relevées lors d'observations de phénomènes semblables, les météorologues ont admis la règle suivante :

« La vitesse des vents dans les tornades diminue régulièrement de 10% toutes les 5 minutes ».

On appelle « durée de vie » d'une tornade le temps nécessaire, depuis sa formation, pour que la vitesse des vents devienne inférieure à 120 $km \cdot h^{-1}$.

1) Lors de la formation d'une tornade, on a mesuré la vitesse des vents par un radar météorologique et on a trouvé une vitesse initiale de 420 $km \cdot h^{-1}$. L'objectif de cette question est de déterminer sa durée de vie ? Modélisons la situation à l'aide d'une suite.

Soit (d_n) la suite qui prend pour valeurs la vitesse des vents :

 $d_0 = 420$, d_n la vitesse des vents à l'instant $5 \times n$. On a alors : $d_{n+1} = d_n - \frac{10}{100}d_n = d_n - 0.1d_n = 0.9d_n$.

Générons cette suite sur tableur :

remarque : dans la colonne A, on a entré les valeurs de n, dans la colonne B, le temps écoulé, dans la colonne C, les vitesses des vents.

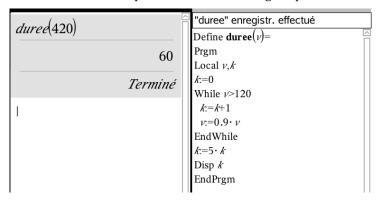
•	А	В	С
=			
1	0	0	420
2	1	5	378.
3	2	10	340.2
4	3	15	306.18
5	4	20	275.562
6	5	25	248.006
7	6	30	223.205

8	7	35	200.885
9	8	40	180.796
10	9	45	162.717
11	10	50	146.445
12	11	55	131.8
13	12	60	118.62
14	13	65	106.758

conclusion:

la durée de vie de cette tornade est donc de 60 minutes.

2) Programme qui retourne la durée de vie lorsque la vitesse est renseignée par l'utilisateur :



Exercice 4

En cherchant de l'aide sur Internet pour résoudre un exercice sur les suites, Paul est tombé sur la formule suivante :

pour tout entier naturel
$$n \ge 1$$
, $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Il demande à son professeur comment démontrer cette formule. Ce dernier propose alors l'exercice suivant à la classe.

On note
$$(u_n)$$
 et (v_n) les suites définies pour $n \ge 1$ par : $u_n = 1^2 + 2^2 + ... + n^2$ et $v_n = \frac{n(n+1)(2n+1)}{6}$.

1) Pour tout $n \ge 1$, $u_{n+1} = 1^2 + 2^2 + ... + n^2 + (n+1)^2 = u_n + (n+1)^2$ et son premier terme est $u_1 = 1^2 = 1$.

2)
$$a/v_1 = \frac{1 \times (1+1) \times (2 \times 1+1)}{6} = \frac{1 \times 2 \times 3}{6} = 1 = u_1.$$

b/

$$v_n + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = (n+1) \times \left[\frac{n(2n+1)}{6} + (n+1) \right]$$
$$= (n+1) \times \frac{n(2n+1) + 6(n+1)}{6} = (n+1) \times \frac{2n^2 + n + 6n + 6}{6}$$
$$= (n+1) \times \frac{2n^2 + 7n + 6}{6} = (n+1) \times \frac{P(n)}{6}$$

avec
$$P(n) = 2n^2 + 7n + 6$$
.

−2 est une racine évidente. Déterminons l'autre racine :

$$P(n) = 2\left(n^2 + \frac{7}{2}n + 3\right)$$
. On a alors: le produit P des racines est: $P = n_1 \times n_2 = -2 \times n_2 = 3 \Leftrightarrow n_2 = -\frac{3}{2}$

D'où
$$P(n) = 2(n+2)(n+\frac{3}{2}) = (n+2)(2n+3)$$
.

Il en résulte que $v_n + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6} = v_{n+1}$, la suite (v_n) satisfait donc la même relation que la suite (u_n) .

3) Les suites (u_n) et (v_n) ont le même premier terme et vérifient la même relation de récurrence alors :

$$u_2 = u_1 + (1+1)^2 = v_1 + (1+1)^2 = v_2$$

 $u_2 = u_2 + (2+1)^2 = v_2 + (2+1)^2 = v_3 \dots$

De proche en proche, on peut conclure que les suites (u_n) et (v_n) sont égales.

Exercice 5

On considère les suites (u_n) et (v_n) définies sur $\mathbb N$ vérifiant les hypothèses suivantes :

- la suite (u_n) est croissante et converge vers 1.
- Pour tout $n \in \mathbb{N}$, $u_n \le v_n$.
 - 1) Dans cette question, on suppose que, pour tout $n \in \mathbb{N}$, $v_n \le 1$ alors: b/la suite (v_n) converge vers 1
 - 2) Dans cette question, on suppose que la suite (v_n) est décroissante alors : b/ la suite (v_n) converge c/ pour tout $n \in \mathbb{N}$, $v_n \ge 1$.

Exercice 6

En thermodynamique, une des lois de Newton indique que la perte de chaleur entre deux instants n et n+1, où n est un entier naturel, d'un corps chauffé est proportionnel à la différence de température entre le corps et le milieu ambiant.

Le coefficient de proportionnalité est $\theta = -0.2$.

On note $T_{air} = 20^{\circ}C$ la température du milieu ambiant. On note T_n la température du corps chauffé à l'instant n.

On suppose que $T_0 = 300^{\circ}C$.

- 1) D'après l'énoncé : $T_{n+1} T_n = -0.2(T_n 20)$ cad : $T_{n+1} T_n = -0.2T_n 0.2 \times (-20) = -0.2T_n + 4$ $T_{n+1} = T_n 0.2T_n + 4 = 0.8T_n + 4$ CQFD
- 2) Il apparaît évident que la température du corps vas se stabiliser et s'approcher de la température du milieu ambiant soit $20^{\circ}C$.
- 3) Méthode 1 : par calcul

La suite T_n est définie par : $\begin{cases} T_0 = 300 \\ T_{n+1} = f(T_n) \end{cases}$ avec la fonction f définie sur $[0; +\infty[$ par : f(x) = 0.8x + 4.

La limite l de la suite $\left(T_{n}\right)$ vérifie, si elle existe, l'équation $l=f\left(l\right)$ cad :

 $l = 0.8l + 4 \Leftrightarrow l - 0.8l = 4 \Leftrightarrow 0.2l = 4 \Leftrightarrow l = \frac{4}{0.2} = 20$

Méthode 2 : méthode graphique (page suivante)

