ARITHMÉTIQUE

Fiche d'exercices n°1: son corrigé

Exercice 1

 $284 = 1 \times 284 = 2 \times 142 = 4 \times 71$.

Les diviseurs propres de 284 sont: 1;2;4;71;142.

La somme S des diviseurs propres de 284 est : S = 1 + 2 + 4 + 71 + 142 = 220

 $S = 220 = 1 \times 220 = 2 \times 110 = 4 \times 55 = 5 \times 44 = 10 \times 22 = 11 \times 20$

Les diviseurs propres de ²²⁰ sont: 1;2;4;5;10;11;20;22;44;55;110

La somme S' des diviseurs propres de 220 est: S' = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

On observe ainsi que la somme des diviseurs propres de 284 est 220 ; la somme des diviseurs propres de 220 est 284.

Exercice 2

- 1) Diviseurs positifs de 30: $30 = 1 \times 30 = 2 \times 15 = 3 \times 10 = 5 \times 6$ d'où: S = 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 = 72.
- 2) Diviseurs positifs de 140 : $140 = 1 \times 140 = 2 \times 70 = 4 \times 35 = 5 \times 28 = 7 \times 20 = 10 \times 14$ d'où : T = 1 + 2 + 4 + 5 + 7 + 10 + 14 + 20 + 28 + 35 + 70 + 140 = 336
- 3) On a alors: $\frac{S}{T} = \frac{72}{336} = \frac{2 \times 2 \times 2 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 3 \times 7} = \frac{3}{14} = \frac{30}{140}$ CQFD.

Exercice 3

➤ Démontrons que pour tout $n \in \mathbb{Z}$, le nombre $n^3 - n$ est un multiple de 6 : cela revient à montrer que 2 et 3 divisent $n^3 - n$.

$$n^{3} - n = n(n^{2} - 1) = (n - 1) \times n \times (n + 1)$$

• Montrons d'abord que 2 divise $n^3 - n$:

Si n est pair alors il existe un entier k tel que n=2k. On a alors : $n^3-n=2k(n-1)(n+1)$ d'où le résultat.

Si n est impair alors n+1 est pair et de manière analogue, il en résulte que n+1 divise n^3-n .

Il en résulte que pour tout $n \in \mathbb{Z}$, 2 divise $n^3 - n$.

• Montrons que 3 divise $n^3 - n$:

1er cas:

3 divise n alors il existe un entier k' tel que n = 3k'. On a alors $n^3 - n = 3k'(n-1)(n+1)$ d'où le résultat.

Sinon, si 3 ne divise pas n alors cela signifie qu'il existe un réel a tel que n = 3a + 1 ou n = 3a + 2.

 2^{nd} cas: n = 3a + 1 alors n - 1 = 3a. On a alors $n^3 - n = 3a \times n \times (n + 1)$ d'où le résultat.

 $3^{\text{ème}}$ cas: n = 3a + 2 alors n + 1 = 3a + 3 = 3(a + 1). On a alors: $n^3 - n = 3(a + 1) \times (n - 1) \times n$ d'où le résultat.

Il en résulte que pour tout $n \in \mathbb{Z}$, 3 divise $n^3 - n$.

conclusion: 2 et 3 divisent $n^3 - n$. D'où 6 divise $n^3 - n$.

ARITHMÉTIQUE

Exercice 4

➤ On considère deux entiers a et b. Démontrons l'équivalence : $7|2a+5b \Leftrightarrow 7|5a+2b$

• Démontrons d'abord que $7|2a+5b \Rightarrow 7|5a+2b$:

On sait que
$$7 \begin{vmatrix} 2a+5b \\ 7 \end{vmatrix} 7 (a+b)$$
 alors $7 \begin{vmatrix} 7(a+b)-(2a+5b) cad 7 \end{vmatrix} 5a+2b$

· Réciproquement :

on sait que
$$\begin{array}{c}
7|5a+2b \\
7|7(a+b)
\end{array}$$
 alors
$$7|7(a+b)-(5a+2b)$$

$$7|2a+5b$$

L'équivalence est donc vérifiée.

Exercice 5

 \blacktriangleright Déterminons les entiers relatifs n tels que n+8 soit divisible par n :

Supposons donc $n \mid n+8$; on sait aussi que $n \mid n$. On en déduit que $n \mid n+8-n$ cad $n \mid 8$

Or on sait que les diviseurs de 8 sont : 1; 2; 4; 8; déduisons-en alors les valeurs possible de n:

• pour n = 1, n + 8 = 9. Or 1 9 donc n = 1 solution;

• pour n = 2, n + 8 = 10. or 2|10 donc n = 2 solution;

• pour n = 4, n + 8 = 12. Or 4 | 12 donc n = 4 solution;

• pour n = 8, n + 8 = 16. Or $16 \mid 8$ donc n = 8 solution.

conclusion: les valeurs de n sont : 1; 2; 4; 8 et leurs opposés.

Remarque : autre méthode possible, démontrer que $n \mid 8 \Rightarrow n \mid n+8$

Très facile, en effet : $\frac{n|8|}{n|n|}$ alors n|n+8|

Il en résulte que $n \mid n+8 \Leftrightarrow n \mid 8$ et les valeurs de n sont les diviseurs de 8.

Exercice 6

On considère un entier naturel n.

1) Montrons que $13 \ 7n + 4 \Rightarrow 13 \ n - 5$:

• On a d'une part :
$$\frac{13|13}{13|7n+4}$$
 alors $13|7n+4-13 \text{ cad } 13|7n-9$

ARITHMÉTIQUE

On a alors:

$$\frac{13|7n-9}{13|6n-4} alors 13|7n-9-(6n-4) cad 13|n-5$$

2) La réciproque est-elle vraie?

On a d'abord
$$13 | n-5 \Rightarrow 13 | 6(n-5) cad 13 | 6n-30$$

On a donc:

$$|13|6n-30$$
 alors $|13|13n-(6n-30)-26$ cad $|13|7n+4$. La réciproque est vérifiée.

Exercice 7

On considère les entiers naturels a et b tels que : a | 5b+31 et a | 3b+12.

1) Montrons que $a \mid 33$:

$$a|5b+31 \Rightarrow a|3(5b+31) \ cad \ a|15b+93 \ ; \ a|3b+12 \Rightarrow a|5(3b+12) \ cad \ a|15b+60$$

On a alors:
$$\frac{a|15b+93}{a|15b+60}$$
 alors $a|15b+93-(15b+60)$ cad $a|33$ CQFD

2) On sait que: $33 = 1 \times 33 = 3 \times 11$. Ainsi les valeurs possibles de a sont: 1;3;11;33.